Package: EMCluster 0.2-16
EMCluster: EM Algorithm for Model-Based Clustering of Finite Mixture Gaussian Distribution
EM algorithms and several efficient initialization methods for model-based clustering of finite mixture Gaussian distribution with unstructured dispersion in both of unsupervised and semi-supervised learning.
Authors:
EMCluster_0.2-16.tar.gz
EMCluster_0.2-16.zip(r-4.5)EMCluster_0.2-16.zip(r-4.4)EMCluster_0.2-16.zip(r-4.3)
EMCluster_0.2-16.tgz(r-4.4-x86_64)EMCluster_0.2-16.tgz(r-4.4-arm64)EMCluster_0.2-16.tgz(r-4.3-x86_64)EMCluster_0.2-16.tgz(r-4.3-arm64)
EMCluster_0.2-16.tar.gz(r-4.5-noble)EMCluster_0.2-16.tar.gz(r-4.4-noble)
EMCluster_0.2-16.tgz(r-4.4-emscripten)EMCluster_0.2-16.tgz(r-4.3-emscripten)
EMCluster.pdf |EMCluster.html✨
EMCluster/json (API)
# Install 'EMCluster' in R: |
install.packages('EMCluster', repos = c('https://snoweye.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/snoweye/emcluster/issues
Last updated 2 months agofrom:4a5fa6b35e. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 07 2024 |
R-4.5-win-x86_64 | OK | Nov 07 2024 |
R-4.5-linux-x86_64 | OK | Nov 07 2024 |
R-4.4-win-x86_64 | OK | Nov 07 2024 |
R-4.4-mac-x86_64 | OK | Nov 07 2024 |
R-4.4-mac-aarch64 | OK | Nov 07 2024 |
R-4.3-win-x86_64 | OK | Nov 07 2024 |
R-4.3-mac-x86_64 | OK | Nov 07 2024 |
R-4.3-mac-aarch64 | OK | Nov 07 2024 |
Exports:.EMControlappend.BNassign.classassign.class.wtbh.fdrcheck.dimcheck.dim.wtclass2Gammaclass2Gamma.wtcreate.cexcreate.colorsdlmvndmixmvndmixmvn.wtdmvndraw.colorse.stepe.step.wtem.aicem.bicem.clcem.EMem.icem.iclem.icl.bicem.initem.Modelemclusteremcluster.wtemgroupemgroup.wtexhaust.EMfill.ppcontourfill.ppmufill.pppointsGamma2classGamma2class.wtGenDataSetGenMixDataSetget.cov.logit.PIget.cov.logit.zget.cov.paramget.cov.post.zget.E.chi2get.E.deltaget.logor.statgetlistGmatgridOneinit.EMIyIy2Jaccard.IndexlmtlogLlogL.wtLTsigma2varLTSigma2variancem.stepm.step.wtmatch.colcexmb.em.EMmb.rand.EMmeandispersionmy.catmy.formatmy.printpartial.f.mu.spartial.logit.ppartial.logLpartial.post.zpartial.post.z.1partial.qpchisq.myplot2dplotbarplotBNplotemplotlikeprobplotmdplotpplotppcontourplotptplotqpostPIprint.emretprint.initretprint.lmtprint.RRandretprint.summary.emretprint.summary.svdprint.svdproject.on.2dq.map.newrand.EMrecoderecolorrematchRRandshortemclustershortemcluster.wtsimple.initstarts.via.svdstarts.via.svd.wtsummary.emretsummary.emret.wtsummary.svdsummary.svd.wtvar2LTsigmavariance2LTSigmaw.2wt2wot
Readme and manuals
Help Manual
Help page | Topics |
---|---|
EM Algorithm for Model-Based Clustering of Finite Mixture Gaussian Distribution | EMCluster-package |
Assign Class Id | assign.class |
Convert Matrices in Different Format | class2Gamma Gamma2class LTsigma2var LTSigma2variance var2LTsigma variance2LTSigma |
Dataset for demonstrations | da1 da2 da3 |
EM Algorithm for model-based clustering | emcluster emobj object emret class shortemcluster simple.init |
EM Control Generator and Controller | .EMC .EMC.Rnd .EMC.Rndp .EMControl |
Information Criteria for Model-Based Clustering | em.aic em.bic em.clc em.ic em.icl em.icl.bic |
Initialization and EM Algorithm | em.EM exhaust.EM init.EM rand.EM |
Jaccard Index | Jaccard.Index |
Likelihood Mixture Tests | lmt |
Likelihood Mixture Test (LMT) Functions of EMCluster | bh.fdr col.ppcontour fill.ppcontour fill.ppmu fill.pppoints GenDataSet GenMixDataSet get.E.chi2 get.E.delta Gmat gridOne Iy Iy2 partial.logL partial.q pchisq.my plotp plotq postPI print.lmt q.map.new w.2 |
Density of (Mixture) Multivariate Normal Distribution | dlmvn dmixmvn dmvn logL |
Other Initializations | emgroup starts.via.svd |
Plot Two Dimensional Data with clusters | plot2d plotem |
Plot Multivariate Data | plotmd |
Plot Contour | plotppcontour |
Post I Information Functions of EMCluster | get.cov.logit.PI get.cov.logit.z get.cov.param get.cov.post.z get.logor.stat partial.f.mu.s partial.logit.p partial.post.z partial.post.z.1 |
Functions for Printing or Summarizing Objects According to Classes | print.emret summary.emret summary.svd |
Produce Projection on 2D | project.on.2d |
Rand Index and Adjusted Rand Index | RRand |
Recolor Classification IDs | recode recolor rematch |
Single E- and M-step | e.step m.step |