
A Quick Guide for the pbdMPI Package

Wei-Chen Chen1, George Ostrouchov1,2,3, Drew Schmidt1,
Pragneshkumar Patel1,3, Hao Yu4

1pbdR Core Team

2Computer Science and Mathematics Division,
Oak Ridge National Laboratory,

Oak Ridge, TN, USA

3National Institute for Computational Sciences,
University of Tennessee,

Knoxville, TN, USA

4University of Western Ontario,
London, Ontario, Canada

Contents

Acknowledgement iii

1. Introduction 1
1.1. System Requirements . 2
1.2. Installation and Quick Start . 2
1.3. Basic Steps . 3
1.4. More Examples . 4

2. Performance 5

3. SPMD in Examples from package parallel 6

4. Long Vector and 64-bit for MPI 9

5. Simple Input and Output 11

6. Simple Pairwise Evaluation 12

7. Windows Systems (MS-MPI) 13
7.1. Install from Binary . 15
7.2. Build from Source . 15

i

8. FAQs 16
8.1. General . 16
8.2. Programming . 18
8.3. MPI Errors . 21
8.4. Other Errors . 26

References 27

© 2012-2016 pbdR Core Team.
Permission is granted to make and distribute verbatim copies of this vignette and its source
provided the copyright notice and this permission notice are preserved on all copies.
This publication was typeset using LATEX.

ii

Acknowledgement
Chen was supported in part by the project “Bayesian Assessment of Safety Profiles for Preg-
nant Women From Animal Study to Human Clinical Trial” funded by U.S. Food and Drug
Administration, Office of Women’s Health. The project was supported in part by an ap-
pointment to the Research Participation Program at the Center For Biologics Evaluation and
Research administered by the Oak Ridge Institute for Science and Education through an
interagency agreement between the U.S. Department of Energy and the U.S. Food and Drug
Administration

Chen was supported in part by the Department of Ecology and Evolutionary Biology at the
University of Tennessee, Knoxville, and a grant from the National Science Foundation (MCB-
1120370.)

Chen and Ostrouchov were supported in part by the project “Visual Data Exploration and
Analysis of Ultra-large Climate Data” funded by U.S. DOE Office of Science under Con-
tract No. DE-AC05-00OR22725. Ostrouchov, Schmidt, and Patel were supported in part by
the project “NICS Remote Data Analysis and Visualization Center” funded by the Office of
Cyberinfrastructure of the U.S. National Science Foundation under Award No. ARRA-NSF-
OCI-0906324 for NICS-RDAV center.

This work used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725. This work also used resources of National
Institute for Computational Sciences at the University of Tennessee, Knoxville, which is sup-
ported by the Office of Cyberinfrastructure of the U.S. National Science Foundation under
Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV center. This work used resources of
the Newton HPC Program at the University of Tennessee, Knoxville.

We thank our colleagues from the Scientific Data Group, Computer Science and Mathematics
Division, Oak Ridge National Laboratory, Hasan Abbasi, Jong Youl Choi, Scott Klasky, and
Nobert Podhorszki for discussing windows MPI systems, compiler issues, dynamic libraries,
and generally improving our knowledge of MPI performance issues.

We also thank Brian D. Ripley, Kurt Hornik, Uwe Ligges, and Simon Urbanek from the R
Core Team for discussing package release issues and helping us solve portability problems on
different platforms.

iii

Warning: The findings and conclusions in this article have not been formally disseminated
by the U.S. Department of Health & Human Services nor by the U.S. Department of Energy,
and should not be construed to represent any determination or policy of University, Agency,
Administration and National Laboratory.
This document is written to explain the main functions of pbdMPI (Chen et al. 2012), ver-
sion 0.3-0. Every effort will be made to ensure future versions are consistent with these
instructions, but features in later versions may not be explained in this document.
Information about the functionality of this package, and any changes in future versions can be
found on website: “Programming with Big Data in R” at http://r-pbd.org/ (Ostrouchov
et al. 2012).

1. Introduction
Our intent is to bring the most common parallel programming model from supercomputing,
Single Program Multiple Data (SPMD), to R and enable distributed handling of truly large
data and large parameter spaces. Consequently, pbdMPI is intended for batch mode pro-
gramming with big data (pbd) on HPC clusters. Unlike Rmpi (Yu 2002), snow (Tierney
et al. 2012), or parallel (R Core Team 2012), interactive mode is not supported. We think
that interaction with a large distributed parallel computing platform is better handled with
a client/server relationship, and we have developed other packages, such as remoter and pb-
dZMQ, in this direction. pbdMPI simplifies MPI interaction, but leaves low and mid level
functions available for advanced programmers. Collective operations, such as allreduce and
allgather, are considered high-level and easy to use, in contrast to send and receive, which
are low-level and considered an advanced topic. It is also possible to hand communicators to
pbdMPI from other applications through MPI array pointers. This is intended for integration
with other, possibly non-R, parallel software, to eliminate the need to copy or send data.
Under the SPMD parallel programming model, the identical program runs on every processor
but typically works on different parts of a large data set or on different subsets of some
parameter space, while communicating with other copies of itself as needed. Differences in
execution stem from comm.rank, which is typically different on every processor. While on
the surface this sounds complicated, after some experience and a new mindset, programming
is surprisingly simple. There is no manager. There is only cooperation among the workers.
Although we target very large distributed computing platforms, SPMD works well even on
small multicore platforms.
In the following, we list the main features of pbdMPI.

1. Under the SPMD batch programming model, a single program is written, which is
spawned by mpirun. No spawning and broadcasting from within R are required.

2. S4 methods are used for most collective functions so it is easy to extend them for general
R objects.

3. Default methods (like Robj functions in Rmpi) have homogeneous checking for data
type so they are safe for general users.

4. The API in all functions is simplified, with all default arguments in control objects.

1

http://r-pbd.org/

5. Methods for array or matrix types are implemented without serialization and un-
serialization, resulting in faster communication than Rmpi.

6. Basic data types of integer, double and raw in pbdMPI are communicated without
further checking. This is risky but fast for advanced programmers.

7. Character data type is serialized and communicated by raw type.

System requirements and installation of pbdMPI are described next. Section 2 gives a short
example for comparing performance of pbdMPI and Rmpi (Yu 2002). In Section 8, a few
quick answers for questions are given. Section 7 provides settings for Windows environments.
In Section 3, two examples from parallel are shown as SPMD pbdMPI programs. Section 4
discusses long vector support and communication in pbdMPI as an extension from R. Finally,
in Section 5, some simple input and output methods between regular text/csv/csv2 files and
data.frame are introduced.

1.1. System Requirements

pbdMPI requires MPI (http://en.wikipedia.org/wiki/Message_Passing_Interface). The
package is mainly developed and tested under OpenMPI (http://www.open-mpi.org/) in
xubuntu 11.04 (http://xubuntu.org/). The package should also work with MPICH2 (http:
//www.mcs.anl.gov/research/projects/mpich2/) and Microsoft MPI or MS-MPI (http:
//msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx). In addition to unix,
pbdMPI should also run under other operating systems such as Mac OS X with OpenMPI
or Windows 7 with MS-MPI if MPI is installed and launched properly, although we have not
tested on multiple machines yet. Please let us know about your experience.
For normal installation, see Sec. 1.2. To build as a static library, which may be required on
some large systems, use

Shell Command� �
./ configure --enable - static --prefix =${MPI_ROOT}
make
make install� �
where -–enable-static can build a static library (optional), and ${MPI_ROOT} is the path to
MPI root. Note that the static library is not necessary for pbdMPI but may avoid dynamic
loading problems.
To make sure your MPI system is working, test with

Shell Command� �
mpiexec -np 2 hostname� �
This should list two host names where MPI jobs are running. Note to use hostname.exe with
the extension on a Windows system.

1.2. Installation and Quick Start

One can download pbdMPI from CRAN at https://cran.r-project.org, and the intalla-
tion can be done with the following commands (using OpenMPI library)

2

http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.open-mpi.org/
http://xubuntu.org/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/
http://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
https://cran.r-project.org

Shell Command� �
tar zxvf pbdMPI _0.1 -0. tar.gz
R CMD INSTALL pbdMPI� �
Further configure arguments include

Argument Default
-–with-mpi-type OPENMPI
-–with-mpi-include ${MPI_ROOT}/include
-–with-mpi-libpath ${MPI_ROOT}/lib
-–with-mpi ${MPI_ROOT}

where ${MPI_ROOT} is the path to the MPI root. For non-default and unusual installations
of MPI systems, the commands may be

Shell Command� �
Under command mode
R CMD INSTALL pbdMPI \

--configure -args="--with -mpi -type= OPENMPI \
--with -mpi=/usr/ local"

R CMD INSTALL pbdMPI \
--configure -args="--with -mpi -type= OPENMPI \

--with -mpi - include =/usr/local /ompi/ include \
--with -mpi - libpath =/usr/local /ompi/lib"� �

See the package source file pbdMPI/configure for details.
One can get started quickly with pbdMPI by learning from the following six examples.

Shell Command� �
At the shell prompt , run the demo with 2 processors by
(Use Rscript .exe for windows system)
mpiexec -np 2 Rscript -e "demo(allgather ,'pbdMPI ',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(allreduce ,'pbdMPI ',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(bcast ,'pbdMPI ',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(gather ,'pbdMPI ',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(reduce ,'pbdMPI ',ask = F,echo=F)"
mpiexec -np 2 Rscript -e "demo(scatter ,'pbdMPI ',ask=F,echo=F)"� �
1.3. Basic Steps

In the SPMD world, every processor is a worker, every worker knows about all the others,
and each worker does its own job, possibly communicating with the others. Unlike the man-
ager/workers style, SPMD is more likely to fully use the computer resources. The following
shows typical basic steps of using pbdMPI.

1. Initialize. (init)

3

2. Read your portion of the data.

3. Compute. (send, recv, barrier, ...)

4. Communicate results among workers. (gather, allgather, reduce, allreduce, ...)

5. Finalize. (finalize)

In a given application, the Compute and Communicate steps may be repeated several times for
intermediate results. The Compute and Communicate steps are more general than the “map”
and “reduce” steps of the map-reduce paradigm but similar in spirit. One big difference is
that the Communicate step may place the “reductions” on all processors rather than just one
(the manager for map-reduce) for roughly the same time cost. With some experience, one can
easily convert existing R scripts, and quickly parallelize serial code. pbdMPI tends to reduce
programming effort, avoid complicated MPI techniques, and gain computing performance.
The major communication functions of pbdMPI and corresponding similar functions of Rmpi
are listed in the following.

pbdMPI (S4) Rmpi
allgather mpi.allgather, mpi.allgatherv, mpi.allgather.Robj
allreduce mpi.allreduce

bcast mpi.bcast, mpi.bcast.Robj
gather mpi.gather, mpi.gatherv, mpi.gather.Robj
recv mpi.recv, mpi.recv.Robj

reduce mpi.reduce
scatter mpi.scatter, mpi.scatterv, mpi.scatter.Robj

send mpi.send, mpi.send.Robj

1.4. More Examples

The package source files provide several examples based on pbdMPI, such as

Directory Examples
pbdMPI/inst/examples/test_spmd/ main SPMD functions
pbdMPI/inst/examples/test_rmpi/ comparison to Rmpi
pbdMPI/inst/examples/test_parallel/ comparison to parallel
pbdMPI/inst/examples/test_performance/ performance testing
pbdMPI/inst/examples/test_s4/ S4 extension
pbdMPI/inst/examples/test_cs/ client/server examples
pbdMPI/inst/examples/test_long_vector/ long vector examples

where test_long_vector/ requires to recompile with setting

pkg_constant.h� �
define MPI_LONG_ DEBUG 1� �

4

in pbdMPI/src/pkg_constant.h. See Scetion 4 for details.
Further examples can be found at including:

• “Introduction to distributed computing with pbdR at the UMBC High Performance
Com puting Facility (Technical Report, 2013).” (Raim 2013)

2. Performance
There are more examples for testing performance in pbdMPI/inst/examples/test_rmpi.
Here, we only show a simple comparison of pbdMPI to Rmpi. The two scripts are equivalent
for pbdMPI and Rmpi. We run them with two processors and obtain computing times listed
below.
Save the following script in demo_spmd.r and run it with two processors by

Shell Command� �
mpiexec -np 2 Rscript demo_spmd.r� �
to see the computing time on your platform.

pbdMPI R Script� �
Save this script in "demo_spmd.r".
suppressMessages (library (pbdMPI , quietly = TRUE))
init ()

time.proc <- list ()
time.proc$ default <- system .time ({

for(i in 1:1000) y <- allgather (list(x = 1:10000))
barrier ()

})

time.proc$ matrix <- system .time ({
for(i in 1:1000) y <- allgather (matrix (1:10000 , nrow = 100))
barrier ()

})

comm.print (time.proc , quiet = TRUE)
finalize ()� �
Save the following script in demo_rmpi.r and run with two processors by

Shell Command� �
mpiexec -np 2 Rscript demo_rmpi.r� �
to see the computing time on your platform.

Rmpi R Script� �
Save this script in "demo_rmpi.r".
library (Rmpi)

5

invisible (mpi.comm.dup (0, 1))

time.proc <- list ()
time.proc$Robj <- system .time ({

for(i in 1:1000) y <- mpi. allgather .Robj(list(x = 1:10000))
mpi. barrier ()

})

time.proc$ matrix <- system .time ({
for(i in 1:1000) y <- mpi. allgather .Robj(matrix (1:10000 , nrow =

100))
mpi. barrier ()

})

if(mpi.comm.rank (1) == 0) print (time.proc)
mpi.quit ()� �
The following shows the computing time of the above two scripts on a single machine with
two processors Intel(R) Core(TM) i5-2410M CPU @ 2.30 GHz, xubuntu 11.04 system, and
OpenMPI 1.6. The pbdMPI is more efficient than Rmpi with list and matrix/array data
structures.

R Output� �
>> Output from demo_spmd.r
$ default

user system elapsed
1.680 0.030 1.706

$ matrix
user system elapsed

0.950 0.000 0.953

>> Output from demo_rmpi.r
$Robj

user system elapsed
2.960 0.090 3.041

$ matrix
user system elapsed

3.120 0.030 3.147� �
3. SPMD in Examples from package parallel

We demonstrate how a simple script from parallel can be written in batch by using pbdMPI.
Each time, we first give the version using parallel followed by the version using pbdMPI. All
codes are available in pbdMPI/inst/examples/test_parallel/.

Example 1: (mclapply() originates in multicore (Urbanek 2011))
Save the following script in a file and run with

6

Shell Command� �
Rscript 01_ mclapply _par.r� �
to see the computing time on your platform.

multicore R Script� �
File Name: 01_ mclapply _par.r
library (parallel)

system .time(
unlist (mclapply (1:32 , function (x) sum(rnorm (1e7))))

)� �
Now save this script in a file and run with

Shell Command� �
mpirun -np 2 Rscript 01_ mclapply _spmd.r� �
to see the computing time on your platform.

SPMD R Script� �
File Name: 01_ mclapply _spmd.r
suppressMessages (library (pbdMPI , quietly = TRUE))
init ()

time.proc <- system .time ({
id <- get.jid (32)
ret <- unlist (lapply (id , function (i) sum(rnorm (1e7))))
ret <- allgather (ret , unlist = TRUE)

})
comm.print (time.proc)

finalize ()� �
The following shows the computing time of the above codes on a single local machine with two
cores Intel(R) Core(TM) i5-2410M CPU @ 2.30 GHz, xubuntu 11.04 system, and OpenMPI
1.6. There is not much communication latency in this example since all computings are on
one “node” which is also a limitation of parallel.

R Output� �
>> Test ./01_ mclapply _par.r

user system elapsed
16.800 0.570 17.419

>> Test ./01_ mclapply _spmd.r
COMM.RANK = 0

user system elapsed
17.130 0.460 17.583� �

Example 2: (parMM() originates in snow (Tierney et al. 2012))
Save the following code in a file and run with two processors

7

Shell Command� �
Rscript 02_ parMM_par.r� �
to see the computing time on your platform.

snow R Script� �
File Name: 02_parMM _par.r
library (parallel)
cl <- makeCluster (2)

splitRows <- function (x, ncl){
lapply (splitIndices (nrow(x), ncl), function (i) x[i, , drop = FALSE])

}
parMM <- function (cl , A, B){

do.call(rbind , clusterApply (cl , splitRows (A, length (cl)),
get("%*%"), B))

}

set.seed (123)
A <- matrix (rnorm (1000000) , 1000)
system .time(replicate (10, A %*% A))
system .time(replicate (10, parMM(cl , A, A)))

stopCluster (cl)� �
Now save this script in a file and run with

Shell Command� �
mpirun -np 2 Rscript 02_parMM _spmd.r� �
to see the computing time on your platform.

SPMD R Script� �
File Name: 02_parMM _spmd.r
suppressMessages (library (pbdMPI , quietly = TRUE))
init ()

set.seed (123)
x <- matrix (rnorm (1000000) , 1000)

parMM.spmd <- function (x, y){
id <- get.jid(nrow(x))
do.call(rbind , allgather (x[id ,] %*% y))

}
time.proc <- system .time(replicate (10, parMM.spmd(x, x)))
comm.print (time.proc)

finalize ()� �
The following shows the computing time of the above code on a single machine with two pro-
cessors Intel(R) Core(TM) i5-2410M CPU @ 2.30 GHz, xubuntu 11.04 system, and OpenMPI

8

1.6. pbdMPI performs better than snow in this example even without communication over
network.

R Output� �
>> Test ./02_ parMM _par.r

user system elapsed
12.460 0.170 12.625

user system elapsed
1.780 0.820 10.095

>> Test ./02_ parMM _spmd.r
COMM.RANK = 0

user system elapsed
8.84 0.42 9.26� �

4. Long Vector and 64-bit for MPI
We add new supports for long vector and communications based on MPI functions to pbdMPI
since version 0.2-1.

4.1. Long Vector for MPI

The current R (3.1.0) uses C structure to extend 32-bit length limitation (231−1 = 2147483647
defined as R_SHORT_LEN_MAX) to 52-bit length (251 − 1 = 4503599627370496 defined as
R_XLEN_T_MAX). In general, this is more portable and extensible when 128-bit integer com-
ming on (who know when the day comes ...) However, a vector with elements larger than
231 − 1 needs extra effort to be accessed in R. See “R Internals” for details.
The reason is that an integer is 4 bytes in both of x86_64 system (64-bit) and i386 system
(32-bit). Since the capacity of current machine and performance issues, there is no benefit to
use 8 bytes for integer. In x86_64 system, computers or compilers use either long or long
long for pointer address which is in size_t for unsigned address or in ptrdiff_t for signed
address. For example, in GNU C (gcc), the flag -m64 is to use 4 bytes for int and 8 bytes
for long in x86_64 system.1

Therefore, the question is what are the differences of 64-bit and 32-bit system? One of them
is “pointer size” which is 8 bytes in x86_64 machine and it is 4 bytes in i386 machine. This
allows computer to lengthen memory and disk space. Note that address is indexed by long
or long long which is no confilict with integer size, and 4 bytes integer is efficient and safe
enough for general purpose. For example, double *a is a pointer (a) pointing to a real scaler
(*a), but the pointer’s address (&a) is in size_t (long or long long) which is 8 bytes in
x86_64 system and is 4 bytes in i386 system.
To deal with long vector, pbdMPI uses the same framework as R to build up MPI collective
functions. pbdMPI follows R’s standard to assume a vector normally has length smaller than
R_SHORT_LEN_MAX which can be handled by most 32-bit functions. If the vector length is
greater than R_SHORT_LEN_MAX, then R names this as long vector which also has the maximum
R_XLEN_T_MAX. The vector length is stored in type R_xlen_t. The R_xlen_t is long if

1Is there a way to have 8 bytes integer? The answer is that it is dependent on compiler.

9

LONG_VECTOR_SUPPORT is defined, otherwise it is int. R provides several C macro to check,
access, and manipulate the vector in VECSXP or general SEXP. See Rinternals.h for details.
The pbdMPI first checks if the data size for communication is greater than SPMD_SHORT_LEN_MAX
or not. If the data is long vector, then pbdMPI evokes collective functions to send/receive
chunk of data partitioned by SPMD_SHORT_LEN_MAX until all chunks are all received/sent. For
some MPI collective functions such as allgather() and gather(), extra space may be allo-
cated for receving chunks, then the chunks are copied to right memory address by the rank
of communicator from the extra space to the receiving buffer.
The reason is that most MPI collective functions rely on arguments for indexing buff types
and counting buffer sizes where the types and sizes are both in int. SPMD_SHORT_LEN_MAX
is defined in pbdMPI/src/spmd.h and usually is equal to R_SHORT_LEN_MAX. Developers may
want to use shorter length (such as SPMD_INT8_LEN_MAX which is 27 − 1 = 127) for test-
ing without a large memory machine or for debugging without recompiling R with shorter
R_SHORT_LEN_MAX.
In pbdMPI, the implemented MPI collective functions for long vector are bcast(), allreduce(),
reduce(), send(), recv(), isend(), irecv(), allgather(), gather(), and scatter().
The other MPI collective functions are “NOT” implemented due to the complexity of mem-
ory allocation for long vector including allgatherv(), gatherv(), scatterv(), sendrecv(),
and sendrecv.replace().
Further, pbdMPI provides a way to mimic long vector support. Users can set

pkg_constant.h� �
define MPI_LONG_ DEBUG 1� �
in pbdMPI/src/pkg_constant.h to turn on debugging mode and recompile pbdMPI. Then,
run examples in pbdMPI/inst/examples/test_long_vector/ to see how the mimic long
vectors are communicated between processors. Also, users can also adjust the length limit of
mimic long vector (buffer size) by changing

spmd.h� �
define SPMD_ SHORT _LEN_MAX R_SHORT _LEN_MAX� �
in pbdMPI/src/spmd.h.

4.2. 64-bit for MPI

The remaining question is that does MPI library support 64-bit system? The answer is yes,
but users may need to recompile MPI libraries for 64-bit support. The same way as R to
enable 64-bit system that MPI libraries may have 8 bytes pointer in order to communicate
larger memory or disk space.2

For example, the OpenMPI provides next to check if 64-bit system is used.

Shell Command� �
ompi_info -a | grep 'int.* size: '� �

2http://wiki.chem.vu.nl/dirac/index.php/How_to_build_MPI_libraries_for_64-bit_integers.

10

http://wiki.chem.vu.nl/dirac/index.php/How_to_build_MPI_libraries_for_64-bit_integers

If the output is

Shell Command� �
C int size: 4

C pointer size: 8
Fort integer size: 8

Fort integer1 size: 1
Fort integer2 size: 2
Fort integer4 size: 4
Fort integer8 size: 8

Fort integer16 size: -1� �
then the OpenMPI supports 64-bit system.3 Otherwise, users may use the next to reinstall
OpenMPI as

Shell Command� �
./ configure --prefix =/path_to_ openmpi \

CFLAGS =-fPIC \
FFLAGS ="-m64 -fdefault -integer -8" \
FCFLAGS ="-m64 -fdefault -integer -8" \
CFLAGS =-m64 \
CXXFLAGS =-m64� �

and remember to reinstall pbdMPI as well.
Note that 64-bit pointer may only provide larger size of data, but may degrade hugely for
other computing. In general, communication with a large amount of data is a very bad
idea. Try to redesign algorithms to communicate lightly such as via sufficient statistics, or to
rearrange and load large data partially or equally likely to every processors.

5. Simple Input and Output
We add new supports simple data input and output for basic CSV and text files to pbdMPI
since version 0.2-2.
Two quick demos can simply explain how a dataset can be input and output via pbdMPI
functions comm.write.table() and comm.read.table(). The first is

Shell Command� �
Run the demo with 4 processors by
mpiexec -np 4 Rscript -e "demo(simple _io ,'pbdMPI ',ask=F,echo=F)"� �
The demo utilizing iris data (Fisher 1936) to show simple input and output functions of
pbdMPI and is summarized as in next.

• 150 rows of iris are divided in 4 processors, and processors own 37, 37, 38, and 38
rows of iris as a gbd row-block format. i.e. Rank 0 owns row 1 to 37, rank 1 owns row
38 to 74, and so on.

3The C integer is still in 4 bytes rather than 8 bytes.

11

• A text file “iris.txt” is dumped via comm.write.table() which sequentially append
processor owned row blocks.

• comm.read.table() then reads the text file back in memory, and again in a gbd row-
block format.

Note that comm.read.table() may read a first few lines to predetermine how many lines of
the file to read in. This is an approximation and results in unbalance data across processors.
In particular, either the highest order rank may own the largest portion of whole dataset,
or several higher order ranks may own zero row. So, a call comm.load.balance() within
comm.read.table() is to move rows across processors if necessary. Basically, the reading
steps are described as in the next.

1. If file size were less than 5MB, then rank 0 would read in the whole file and scatter rows
to other ranks.

2. If file size were large than 5MB, then rank 0 would read in the first 500 lines and estimate
total number of records in the file. All ranks sequentially read in the designated records.

3. Call comm.load.balance() to balance the data.

The file size limit is controlled by .pbd_env$SPMD.IO$max.file.size, and the first few line
limit is controlled by .pbd_env$SPMD.IO$max.test.lines. Further, users can specify options
nrows and skip to comm.read.*() to manually read the file and call comm.load.balance()
later if needed.
There are several way to distributed or balance data among processors. Currently pbdMPI
supports 3 formats: block, block0, and block.cyclic. In the above demo, the 150 rows are
mainly distributed in (37, 37, 38, 38) which is a block format. The second demo shows how
to load balance between different formats next.

Shell Command� �
Run the demo with 4 processors by
mpiexec -np 4 Rscript -e "demo(simple _balance ,'pbdMPI ',ask=F,echo=F)"� �
In the block0, the iris is distributed as (38, 38, 37, 37) row-bock of each processor. In the
block.cyclic, the iris is distributed as (38, 38, 38, 36) row-bock of each processor. i.e. Each
cycle has 38 rows and one cycle per processor.
See pbdDEMO vignettes (Schmidt et al. 2013) for more details about “block-cyclic” and
“gbd”.

6. Simple Pairwise Evaluation
We build some utilities for pairwise evaluation to pbdMPI since version 0.2-3.
Evaluating a function on any two data points is a common problems, such as distance, pairwise
comparison, and multiple testing problems. Useful functions to solve those problems are

• comm.as.gbd(): This function is to turn a common matrix (in all ranks) to a gbd
matrix in row major blocks. For example, one may read in data from one rank, then

12

utilizes this function to redistribute data with load balance of all ranks. This is an
alternative way to Section 5, but more efficient for small size of data.

• comm.allpairs(): This function is mainly to provide indices for all pairs of N data
points. It returns a two columns (i, j) gbd matrix in row major blocks. For example, one
may want to evaluate all N2 pairs of the N data points. However, in distance context,
it provides only indices as in lower-triangular matrix (ordered by row major).

• comm.dist(): This function is to compute distance (lower-triangular only) of N data
points as usual dist() function, but evaluated on a gbd matrix in row major blocks.
The returning can be a common distance matrix (only good for small dataset), or a 3
columns gbd matrix in row major blocks. The columns are i, j, and the value of pair (i,
j).

• comm.pairwise(): This functions is a general extension composed of three functions
above that allows users to provide a function FUN to evaluate on pairs of data. For
example, a distance between two data points x and y can be computed via original
dist() function. So, it can be wrapped as

R Script� �
dist.pair <- function (x, y, ...){

as. vector (dist(rbind(x, y), ...))
}� �
for the FUN option of comm.pairwise().
This function is also useful for cases that measure of pair (i, j) differs to that of pair
(j, i), i.e. non-symmetric measure. If order is matter, then the FUN can be evaluated
via the options either pairid.gbd which can be user defined or simply symmetric =
FALSE.

Also, we provide some examples in man page. A demo verifies these functions in different
ways.

Shell Command� �
Run the demo with 4 processors by
mpiexec -np 4 Rscript -e "demo(simple _pairs ,'pbdMPI ',ask=F,echo=F)"� �
See pbdDEMO vignettes (Schmidt et al. 2013) for more statistical examples.

7. Windows Systems (MS-MPI)
Originally, pbdMPI (later than version 0.2-3 but only up to version 0.3-1) supports Windows
with Microsoft MPI or MS-MPI (http://msdn.microsoft.com/en-us/library/bb524831(v=
vs.85).aspx). pbdMPI was built with ’HPC Pack 2012 R2 MS-MPI Redistributable Pack-
age’ which is available at http://http://www.microsoft.com/en-us/download/. The in-
stallation (MSMPISetup.exe) is easily done with a few clicks provided some service packs and
Visual C++ runtime are installed correctly. The default environment and path are recom-
mended for installation.

13

http://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
http://http://www.microsoft.com/en-us/download/

Currently, pbdMPI (later than version 0.3-2) supports Windows with Microsoft MPI or MS-
MPI version 7.1 (https://www.microsoft.com/en-us/download/details.aspx?id=52981).
Note that this is only a SDK development library which does not contain any MPI executable
file such as mpiexec.exe. This is only for compiling and linking the pbdMPI with MPI li-
brary. However, you will still need ’MS-MPI Redistributable Package’ to have a mpiexec.exe
to run MPI programs or pbdMPI scripts.
The difference of default installation between the SDK library and ’Redistributable Package’
are

• the location of MPI header file, and

• the location of the default installation.

The include path is changed from (Redistributable)

Shell Command� �
MPI_ INCLUDE = ${MPI_ROOT}Inc/� �
to (SDK)

Shell Command� �
MPI_ INCLUDE = ${MPI_ROOT} Include /� �
These are used by pbdMPI/src/Makevars.win. The default installation is changed from
(Redistributable)

Shell Command� �
SET MPI_HOME=C:\ Program Files\ Microsoft MPI\� �
to (SDK)

Shell Command� �
SET MPI_HOME=C:\ Program Files (x86)\ Microsoft SDKS\MPI\� �
These are supposed to be set in a batch file.
For running MPI and R, users need to set PATH to the mpiexec.exe and Rscript.exe. By
default,

Shell Command� �
Under command mode , or save in a batch file.
SET R_HOME=C:\ Program Files\R\R -3.0.1\
SET MPI_HOME=C:\ Program Files\ Microsoft MPI\
SET PATH =% MPI_HOmE%bin \;%R_HOME%bin \;% PATH%� �
Note that the installation (MSMPISetup.exe) may set several environmental variables includ-
ing

• MSMPI_BIN for mpiexec.exe and other executable files,

14

https://www.microsoft.com/en-us/download/details.aspx?id=52981

• MSMPI_INC for header files such as mpi.h,

• MSMPI_LIB32 for 32 bits static libraries such as msmpi.lib, and

• MSMPI_LIB64 for 64 bits static libraries.

These should be useful to verify via R command Sys.getenv().

7.1. Install from Binary

The binary packages of pbdMPI are available on the website: “Programming with Big Data in
R” at http://r-pbd.org/ or “CRAN” at https://cran.r-project.org/package=pbdMPI.
Note that different MPI systems require different binaries. The binary can be installed by

Shell Command� �
R CMD INSTALL pbdMPI _0.2 -3. zip� �
As on Unix systems, one can start quickly with pbdMPI by learning from the following demos.
There are six basic examples.

Shell Command� �
Run the demo with 2 processors by
mpiexec -np 2 Rscript .exe -e "demo(allgather ,'pbdMPI ',ask=F,echo=F)"
mpiexec -np 2 Rscript .exe -e "demo(allreduce ,'pbdMPI ',ask=F,echo=F)"
mpiexec -np 2 Rscript .exe -e "demo(bcast ,'pbdMPI ',ask=F,echo=F)"
mpiexec -np 2 Rscript .exe -e "demo(gather ,'pbdMPI ',ask=F,echo=F)"
mpiexec -np 2 Rscript .exe -e "demo(reduce ,'pbdMPI ',ask=F,echo=F)"
mpiexec -np 2 Rscript .exe -e "demo(scatter ,'pbdMPI ',ask=F,echo=F)"� �
Warning: Note that spacing inside demo is not working for Windows systems and Rscript.exe
should be evoked rather than Rscript.

7.2. Build from Source

Warning: This section is only for building binary in 32- and 64-bit Windows system. A
more general way can be found in the file pbdMPI/INSTALL.
Make sure that R, Rtools, and MINGW are in the PATH. See details on the website "Building R
for Windows" at https://cran.r-project.org/bin/windows/Rtools/. The environment
variable MPI_HOME needs to be set for building binaries.
For example, the minimum requirement (for Rtools32 or earlier) may be

Shell Command� �
Under command mode , or save in a batch file.
SET R_HOME=C:\ Program Files\R\R -3.0.1\
SET RTOOLS =C:\ Rtools \bin\
SET MINGW=C:\ Rtools \gcc -4.6.3\ bin\
SET MPI_HOME=C:\ Program Files\ Miscrosoft MPI\
SET PATH =% MPI_HOME%bin ;%R_HOME %;%R_HOME%bin ;% RTOOLS %;% MINGW %;% PATH%� �
For example, the minimum requirement (for Rtools33 or later) may be

15

http://r-pbd.org/
https://cran.r-project.org/package=pbdMPI
https://cran.r-project.org/bin/windows/Rtools/

Shell Command� �
Under command mode , or save in a batch file.
SET R_HOME=C:\ Program Files\R\R -3.4.0\
SET RTOOLS =C:\ Rtools \bin\
SET MPI_HOME=C:\ Program Files\ Miscrosoft MPI\
SET PATH =% MPI_HOME%bin ;%R_HOME %;%R_HOME%bin ;% RTOOLS %;% PATH%� �
Note that gcc and others within Rtools will be detected by windows R, so the installation
path of Rtools should be exactly the same as C:/Rtools.
With a correct PATH, one can use the R commands to install/build the pbdMPI:

Shell Command� �
Under command mode , build and install the binary .
tar zxvf pbdMPI _0.2 -3. tar.gz
R CMD INSTALL --build pbdMPI
R CMD INSTALL pbdMPI _0.2 -3. zip� �
Warning: For other pbdR packages, it is possible to compile without further changes of
configurations. However, only pbdMPI is tested regularly before any release.

8. FAQs

8.1. General

1. Q: Do I need MPI knowledge to run pbdMPI?
A: Yes, but only the big picture, not the details. We provide several examples in
pbdMPI/inst/examples/test_spmd/ to introduce essential methods for learning MPI
communication.

2. Q: Can I run pbdMPI on my laptop locally?
A: Sure, as long as you have an MPI system. You even can run it on 1 CPU.

3. Q: Does pbdMPI support Windows clusters?
A: Yes, the released binary currently supports MS-MPI. Currently, pbdMPI is built
with ’HPC Pack 2012 R2 MS-MPI Redistributable Package’ which is available at http:
//http://www.microsoft.com/en-us/download/. For other MPI systems, users have
to compile from source.

4. Q: Can I run pbdMPI in OpenMPI and MPICH2 together?
A: No, you can have both OpenMPI and MPICH2 installed in your OS, but you are
only allowed to run pbdMPI with one MPI system. Just pick one.

5. Q: Does pbdMPI support any interactive mode?
A: No, but yes. Since pbdMPI version 0.3-0, there are two additional packages pb-
dZMQ (Chen and Schmidt 2015) and pbdCS (Schmidt and Chen 2015) which provide
servers-client interaction building upon pbdMPI for parallel computing.

16

http://http://www.microsoft.com/en-us/download/
http://http://www.microsoft.com/en-us/download/

Originally, pbdMPI only considers batch execution and aims for programming with big
data that do not fit on desktop platforms. We think that interaction with big data on
a big machine is better handled with a client/server interface, where the server runs
SPMD codes on big data and the client operates with reduced data representations.
If you really need an interactive mode, such as for debugging, you can utilize pbdMPI
scripts inside Rmpi. Rmpi mainly focuses on Manager/Workers computing environ-
ments, but can run SPMD codes on workers only with a few adjustments. See the
“Programming with Big Data in R” website for details at http://r-pbd.org/.
Note that pbdMPI uses communicators different from Rmpi. Be sure to free the memory
correctly for both packages before quitting. finalize(mpi.finalize = FALSE) can
free the memory allocated by pbdMPI, but does not terminate MPI before calling
mpi.quit of Rmpi.

6. Q: Can I write my own collective functions for my own data type?
A: Yes, S4 methods allow users to add their own data type, and functions. Quick
examples can be found in pbdMPI/inst/examples/test_s4/.

7. Q: Does pbdMPI support long vector or 64-bit integer?
A: See Section 4.

8. Q: Does pbdMPI support Amazon Web Services (AWS EC2)?
A: See http://snoweye.github.io/pbdr/aws_ec2.html for setting a cluster on AWS
EC2.

9. Q: Does pbdMPI support multiple nodes in VirtualBox?
A: See http://snoweye.github.io/pbdr/multiple_nodes.html for setting a cluster
with two nodes in VirtualBox. It is extensible to multiple nodes by linked or full cloning
with a few network modifications. A pure text file multiple_nodes.txt contains detail
steps for the setting.

10. Q: A simple pbdMPI testing code hangs but simple MPI pure C code is working?
A: If your VirtualBox has multiple adapters (for example, eth0 for NAT/host, eth1
using internal 192.168.*.* for MPI communication), then you may consider to bring
down eth0 next.

Shell Command� �
sudo ip link set eth0 down� �
Further, you may also consider to consult network experts for IP and routing table
configurations when multiple adapters are required. R/Rscript may not know multiple
adapters nor how networking or routing table is setting up. It is just easier for MPI to
use a single adapter, open all INPUT/OUTPUT/FORWARD ports, stop all firewall,
etc. MPI is designed for high performance computing, so don’t put too much extra stuffs
to decline the performance. (Thanks for Alba Martínez-Ruiz and Cristina Montañola
in Universidad Católica de la Ssma. Concepción, chil providing errors and issues.)

11. Q: (Linux/Unix/Mac) Can I install and run OpenMPI or MPICH locally without root
permission?

17

http://r-pbd.org/
http://snoweye.github.io/pbdr/aws_ec2.html
http://snoweye.github.io/pbdr/multiple_nodes.html

A: Yes. You don’t need root permission to install or run MPI applications. For general
installation of MPI libraries, please see pbdMPI/INSTALL first. For example, you may
install OpenMPI version 1.8.2 under any private user account by

R Script� �
tar zxvf openmpi -1.8.2. tar.gz
cd openmpi -1.8.2
./ configure \

--prefix =/home/user.id/work -my/local/ompi \
CFLAGS =-fPIC

make
make install� �
The MPI library and binary will be installed at /home/user.id/work-my/local/ompi/.
Then, you may add this path to system environment PATH by

R Script� �
export OMPI=/home/user.id/work -my/local/ompi
export PATH=$OMPI/bin:$PATH� �

8.2. Programming

1. Q: What are pbdMPI’s high level back-ends for embarrassingly parallel calculations?
A: See man pages and examples of pbdLapply(), pbdSapply(), pbdApply(), and
task.pull() for more details. Some options of those functions, such as pbd.mode, may
be also useful for different data distribution in embarrassingly parallel calculations.

2. Q: Can I run task jobs by using pbdMPI?
A: Yes, it is relatively straightforward for parallel tasks. Neither extra automatic func-
tions nor further command/data communication is required. In other words, SPMD is
easier for Monte Carlo, bootstrap, MCMC simulation and statistical analysis for ultra-
large datasets. A more efficient way, such as task pull parallelism, can be found in next
Q&A.
Example 1:

SPMD R Script� �
suppressMessages (library (pbdMPI , quietly = TRUE))
init ()

id <- get.jid(total.tasks)

Using a loop.
for(i in id){

Put independent task i script here.
}

Or using apply -like functions .

18

lapply (id , function (i){
Put independent task i script here.

})

finalize ()� �
Note that id gets different values on different processors, accomplishing total.tasks
across all processors. Also note that any data and partial results are not shared across
the processors unless communicated.
Example 2:

SPMD R Script� �
suppressMessages (library (pbdMPI , quietly = TRUE))
init ()

Directly using a loop.
for(i in 1: total.tasks){

if(i %% comm.size () == comm.rank ()){
Put independent task i script here.

}
}

Or using apply -like function .
lapply (1: total.tasks , function (i){

if(i %% comm.size () == comm.rank ()){
Put independent task i script here.

}
})

finalize ()� �
3. Q: Can I use unblocked send functions, such as isend()? Or, does isend() truly

unblocked?
A: The answer is no for pbdMPI earlier than version 0.2-2, but it is changed since
version 0.2-3. A temporary buffer list SPMD.NB.BUFFER is used to store all objects being
sent by isend(). The buffer is created and cumulated in .pbd_env, but released as
wait() is called. Although this may take some performance and space, this can avoid
gc() and memory overwrite before actual sending is done.

4. Q: Can I run un-barrier task jobs, such as task pull parallelism, by using pbdMPI?
A: Yes, it is relatively straightforward via pbdMPI API function task.pull() in
SPMD. For example, the following is available in a demo. It has a user defined function
FUN() that runs on workers, and the manager (rank 0) controls the task management.

Shell Command� �
mpiexec -np 4 Rscript -e "demo(task_pull ,'pbdMPI ',ask=F,echo=F)"� �

SPMD R Script (task_pull)� �
Initialize

19

suppressMessages (library (pbdMPI , quietly = TRUE))

Examples .
FUN <- function (jid){

Sys.sleep (1)
jid * 10

}

ret <- task.pull (1:10 , FUN)
comm.print (ret)

if(comm.rank () == 0){
ret.jobs <- unlist (ret)
ret.jobs <- ret.jobs[names (ret.jobs) == "ret"]
print (ret.jobs)

}

Finish .
finalize ()� �

5. Q: What if I want to run task push or pull by using pbdMPI?
A: No problem. As in the two proceeding examples, task push or pull can be done in
the same way by using rank 0 as the manager and the other ranks as workers. However,
we do not recommend it except perhaps for inhomogeneous computing environments.

6. Q: Are S4 methods more efficient?
A: Yes and No. S4 methods can be a little less efficient than using switch ... case
... in C, but most default methods use raw with un- and serialize which may
cost 3-10 times more than using integer or double. Instead of writing C code, we
take advantage of S4 methods to extend to general R objects (matrix, array, list,
data.frame, and class ...) by communicating with basic data types (integer and
double) and avoid serialization for a substantial speedup.

7. Q: Can I disable the MPI initialization of pbdMPI when I call library(pbdMPI)?
A: Yes, you can set a hidden variable .__DISABLE_MPI_INIT__ in the .GlobalEnv
before calling library(pbdMPI). For example,

SPMD R Script� �
assign (".__ DISABLE _MPI_INIT__", TRUE , envir = . GlobalEnv)
library (pbdMPI)
ls(all.names = TRUE)
init ()
ls(all.names = TRUE)
finalize (mpi. finalize = FALSE)� �
Note that we are *NOT* supposed to kill MPI in the finalize step if MPI is initial-
ized by external applications. But some memory allocated by pbdMPI has to be free,
mpi.finalize = FALSE is set above.
To avoid some initialization issues of MPI, pbdMPI uses a different way than Rmpi.
pbdMPI allows you to disable initializing communicators when loading the library, and

20

later on you can call init to initialize or obtain communicators through .__MPI_APTS__
as in the next question.

8. Q: Can pbdMPI take or export communicators?
A: Yes, the physical memory address is set to the variable .__MPI_APTS__ in the
.GlobalEnv through a call to init(). The variable points to a structure contain-
ing MPI structure arrays preallocated while pbdMPI is loaded. pbdMPI/src/pkg_*
provides a mechanism to take or export external/global variables at the C language
level.

8.3. MPI Errors

1. Q: If compilation successful, but load fails with segfault

Error Message� �
** testing if installed package can be loaded
sh: line 1: 2905 Segmentation fault
'/usr/ local /R/3.0.0 / intel13 /lib64 /R/bin/R' --vanilla 2>&1 <
/tmp/ RtmpGkncGK / file1e541c57190
ERROR: loading failed

*** caught segfault ***
address (nil), cause 'unknown '� �
A: Basically, pbdMPI and all pbdR are tested and have stable configuration in GNU
environment. However, other compilers are also possible such as Intel compiler. This
message may come from the system of login node does not have a MPI system, MPI
system is only allowed to be loaded in computing node, or MPI shared library is not
loaded correctly and known to R. The solution is to use extra flag to R CMD INSTALL
–no-test-load pbdMPI*.tar.gz, and use export LD_PRELOAD=... as the answer to
the next question.

2. Q: If installation fails with

Error Message� �
Error in dyn.load(file , DLLpath = DLLpath , ...) :

unable to load shared object '/.../ pbdMPI /libs/ pbdMPI .so ':
libmpi .so: cannot open shared object file: No such file or

directory� �
A: OpenMPI may not be installed in the usual location, so the environment variable
LD_LIBRARY_PATH should be set to the libmpi.so path, such as

Shell Command� �
export LD_ LIBRARY _PATH=/usr/local/ openmpi /lib:$LD_ LIBRARY _PATH� �
where /usr/local/openmpi/lib should be replaced by the path to libmpi.so. Or,
use export LD_PRELOAD=... to preload the MPI library if the library name is not
conventional, such as

21

Shell Command� �
export LD_ PRELOAD =/usr/local/ openmpi /lib/ libmpi .so:$LD_ PRELOAD� �
Another solution may be to use the unix command ldconfig to setup the correct path.

3. Q: pbdMPI installs successfuly, but fails at initialization when calling the function
init() with error message

Error Message� �
/usr/lib/R/bin/exec/R: symbol lookup error:
/usr/lib/ openmpi /lib/ openmpi /mca_ paffinity _linux.so: undefined

symbol :
mca_base_param _reg_int� �
A: The linked library at installation may be different from the runtime library, especially
when your system has more than one MPI systems. Since the library at installation
is detected by autoconf (configure) and automake (Makevars), it can be linked with
OpenMPI library, but MPICH2 or LAM/MPI is searched before OpenMPI according
to $PATH.
Solutions:

• Check which MPI system is your favorite to call. If you use OpenMPI, then you
have to link with OpenMPI. Similarly, for MPICH2.

• Or, only kepp the MPI system you do like and drop others.
• Use -–with-mpi-type to specify the MPI type.
• Use -–with-mpi-include and -–with-mpi-libpath to specify the right version.

4. Q: (Mac) If installs successfully, but fails at initialization with

Error Message� �
Library not loaded : /usr/lib/ libmpi .0. dylib� �
A: Please make sure the GNU compiler, R, OpenMPI, and pbdMPI are all built and
installed under unified conditions, such as 64-bits environment. 32-bits R may not be
able to load 64-bits OpenMPI nor pbdMPI.

5. Q: (Linux) If OpenMPI mpiexec fails with

Error Message� �
mca: base: component _find: unable to open
/.../ openmpi /lib/ openmpi /mca_ paffinity _hwloc:
/.../ openmpi /lib/ openmpi /mca_ paffinity _hwloc.so:
undefined symbol : opal_ hwloc _ topology (ignored)
...
mca: base: component _find: unable to open
/.../ openmpi /lib/ openmpi /mca_carto _auto_ detect :
/.../ openmpi /lib/ openmpi /mca_carto _auto_ detect .so:
undefined symbol : opal_ carto _base_graph _get_host_graph _fn

(ignored)
...� �

22

A: The linked MPI library libmpi.so may be missing or have a different name. Open-
MPI builds shared/dynamic libraries by default and the target file libmpi.so is used
by pbdMPI/src/spmd.c through #include <dlfcn.h> and dlopen(...) in the file
pbdMPI/src/pkg_dl.c.
Solutions:

• Check if the path and version of libmpi.so are correct. In particular, one may
have different MPI systems installed.

• When linking with libmpi.so in OpenMPI, one must run/load pbdMPI with
OpenMPI’s libmpi.so. The same for LAM/MPI and MPICH2.

• Use export LD_PRELOAD=$PATH_TO_libmpi.so.* in command mode.
• Use the file /etc/ld.so.conf and the command ldconfig to manage personal

MPI installation.
• Or, recompile OpenMPI with a static library, and use libmpi.a instead.

6. Q: (Windows) If OpenMPI mpiexec fails with

Error Message� �
ORTE_ERROR _LOG: Error in file ..\..\..\ openmpi -1
.6\ orte\mca\ess\hnp\ess_hnp_ module .c at line 194
...
ORTE_ERROR _LOG: Error in file ..\..\..\ openmpi -1
.6\ orte\ runtime \orte_init.c at line 128
...� �
A: Check if the network is unplugged, the network should be “ON” even on a single
machine. At least, the status of network interface should be correct.

7. Q: (Windows) If MPICH2 mpiexec fails with

Error Message� �
c:\>"C:\ Program Files\ MPICH2 \bin\ mpiexec .exe" -np 2 Rscript

C:\my_ script .r
launch failed : CreateProcess (Rscript C:\my_ script .r) on
failed , error 2 - The system cannot find the file specified .� �
A: Please try to use Rscript.exe in windows system.

8. Q: For MPICH2 users, if installation fails with

Error Message� �
/usr/bin/ld: libmpich .a(comm_get_attr.o): relocation R_X86_64_32
against `MPIR_ ThreadInfo ' can not be used when making a shared
object ; recompile with -fPIC
libmpich .a: could not read symbols : Bad value
collect2 : ld returned 1 exit status� �
A: MPICH2 by default does not install a shared library which means libmpich.so
is missing and pbdMPI trys to link with a static library libmpich.a instead. Try to
recompile MPICH2 with a flag -–enable-shared and reinstall pbdMPI again.

23

9. Q: For MPICH2 and MPICH3 users, if installation fails with

Error Message� �
/usr/bin/ld: cannot find -lopa
collect2 : error: ld returned 1 exit status
make: *** [pbdMPI .so] Error 1
ERROR: compilation failed for package 'pbdMPI '� �
A: By default, -lopa is required for some systems. However, some systems may not
have it and can be disable with a configuration flag when install pbdMPI, such as R
CMD INSTALL pbdMPI*.tar.gz –configure-args="–disable-opa".

10. Q: (MacOS 10.9.4 + OpenMPI 1.1.8) If compilation successful, but test load fails with
MCA errors such as “Symol not found”

Error Message� �
** installing vignettes

`pbdMPI -guide.Rnw '
** testing if installed package can be loaded
[??.??.??.??.??:??] mca: base: component _find: unable to open
/.../open -mpi/1.8.1 /lib/ openmpi /mca_ allocator _basic:
dlopen (/.../open -mpi/ 1.8.1 /lib/ openmpi /mca_ allocator _ basic.so ,

9):
Symbol not found: _ompi_free_list_item_t_class

Referenced from:
/.../open -mpi/1.8.1 /lib/ openmpi /mca_ allocator _basic.so

Expected in: flat namespace
in /.../open -mpi/1.8.1 /lib/ openmpi /mca_ allocator _basic.so

(ignored)� �
A: The potential problem here is that mpicc –showme provides extra information, such
as multiple include and library paths, and configure is not able to parse correctly.
Therefore, it is easier to manually specify correct paths via –configure-args to R.
(Thanks for Eilidh Troup in University of Edinburgh, Scotland providing errors and
solutions.)

R Script� �
$ mpicc --showme : compile
-I/usr/local/ Cellar /open -mpi/1.8.1 / include
$ mpicc --showme :link
-L/usr/local/opt/ libevent /lib

-L/usr/local/ Cellar /open -mpi/1.8.1 /lib -lmpi

$ R CMD INSTALL pbdMPI _0.2 -4. tar.gz \
--configure -args="--with -mpi -type= OPENMPI \

--with -mpi - include =/usr/local / Cellar /open -mpi/1.8.1 / include \
--with -mpi - libpath =/usr/local / Cellar /open -mpi/1.8.1 /lib"� �

Note that ACX_MPI is also a good solution to fix configure.ac, however, it may screw
up other platforms, such as Solaris, and upset CRAN. Anyone is welcome to submit a
thoughful solution.

24

11. Q: (Windows) If OpenMPI mpiexec fails with

Error Message� �
d:/ Compiler /gcc -4.9.3 /mingw _32/bin/gcc

-I"D:/ RCompile / recent /R -3.3.1 / include " -DNDEBUG
-I"C:/ Program Files/ Microsoft MPI/Inc/" -DMPI2 -DWIN
-DMSMPI _NO_ DEPRECATE _20

-I"d:/ Compiler /gcc -4.9.3 / local330 / include "
-O3 -Wall -std=gnu99 -mtune=core2 -c comm_ errors .c -o

comm_ errors .o
d:/ Compiler /gcc -4.9.3 /mingw _32/bin/gcc

-I"D:/ RCompile / recent /R -3.3.1 / include "
-DNDEBUG -I"C:/ Program Files/ Microsoft MPI/Inc/" -DMPI2 -DWIN
-DMSMPI _NO_ DEPRECATE _20

-I"d:/ Compiler /gcc -4.9.3 / local330 / include "
-O3 -Wall -std=gnu99 -mtune=core2 -c comm_sort_ double .c
-o comm_sort_ double .o

In file included from spmd.h:7:0 ,
from comm_api.h:7,
from comm_sort_ double .c:1:

pkg_ global .h :16:17: fatal error: mpi.h: No such file or directory
include <mpi.h>

^
compilation terminated .
make: *** [comm_sort_ double .o] Error 1� �
A: The C:/Program Files/Microsoft MPI/Inc/ may not exist for the MS-MPI v7.1
SDKs. The header file may in a different installation directory at C:/Program Files
(x86)/Microsoft SDKS/MPI/. See Section 7 for details.

12. Q: (Windows) If pbdMPI fails with

Error Message� �
> library (pbdMPI)
Loading required package : rlecuyer
Error : . onLoad failed in loadNamespace () for 'pbdMPI ', details :

call: inDL(x, as. logical (local), as. logical (now), ...)
error: unable to load shared object

'C:/Users /.../ pbdMPI /libs/x64/ pbdMPI .dll ':
LoadLibrary failure : The specified module could not be found.� �

or with a system error like

Error Message� �
The program can 't start because msmpi.dll is missing from your
computer . Try reinstalling the program to fix this problem .� �
A: Make sure MS-MPI is installed correctly and the msmpi.dll is accessible from PATH
before RGui is launched. Double check with Sys.getenv("PATH") and make sure some-
thing like C:/Program Files/Microsoft MPI/Bin/ is included in it. See Section 7 for
details.

25

8.4. Other Errors

1. Q: pbdMPI is linked with pbdPROF (Chen et al. 2013) and mpiP (Vetter and Mc-
Cracken 2001). (i.e. -–enable-pbdPROF is used in pbdMPI and -–with-mpiP is used
in pbdPROF.) If pbdMPI compilation successful, but load fails with

Error Message� �
Error : . onLoad failed in loadNamespace () for 'pbdMPI ', details :

call: dyn.load(file , DLLpath = DLLpath , ...)
error: unable to load shared object 'pbdMPI .so ':
pbdMPI /libs/ pbdMPI .so: undefined symbol : _Ux86_64_ getcontext� �

A: Some prerequisite packages by mpiP is installed incorrectly. Reinstall mpiP by

R Script� �
./ configure --disable - libunwind CPPFLAGS ="-fPIC

-I/usr/lib/ openmpi / include " LDFLAGS ="-L/usr/lib/ openmpi /lib
-lmpi"� �

and followed by reinstall pbdPROF and pbdMPI.

26

References

Chen W-C Schmidt D, Sehrawat G, Patel P, Ostrouchov G (2013). “pbdPROF: Programming
with Big Data – MPI Profiling Tools.” R Package, URL https://cran.r-project.org/
package=pbdPROF.

Chen WC, Ostrouchov G, Schmidt D, Patel P, Yu H (2012). “pbdMPI: Programming with
Big Data – Interface to MPI.” R Package, URL https://cran.r-project.org/package=
pbdMPI.

Chen WC, Schmidt D (2015). “pbdZMQ: Programming with Big Data – Interface to ZeroMQ.”
R Package, URL https://cran.r-project.org/package=pbdZMQ.

Fisher R (1936). “The use of multiple measurements in taxonomic problems.” Annals of
Eugenics, 2, 179–188.

Ostrouchov G, Chen WC, Schmidt D, Patel P (2012). “Programming with Big Data in R.”
URL http://r-pbd.org/.

R Core Team (2012). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.r-project.org/.

Raim A (2013). Introduction to distributed computing with pbdR at the UMBC High Per-
formance Computing Facility (Technical report HPCF-2013-2). UMBC High Performance
Computing Facility, University of Maryland, Baltimore County.

Schmidt D, Chen WC (2015). “’pbdR’ Client/Server Utilities.” R Package, URL https:
//cran.r-project.org/package=pbdCS.

Schmidt D, Chen WC, Patel P, Ostrouchov G (2013). Speaking Serial R with a Parallel
Accent. R Vignette, URL https://cran.r-project.org/package=pbdDEMO.

Tierney L, Rossini AJ, Li N, Sevcikova H (2012). “snow: Simple Network of Workstations.”
R package (v:0.3-9), URL https://cran.r-project.org/package=snow.

Urbanek S (2011). “multicore: Parallel processing of R code on machines with multiple cores
or CPUs.” R package (v:0.1-7), URL https://cran.r-project.org/package=multicore.

Vetter JS, McCracken MO (2001). “Statistical scalability analysis of communication op-
erations in distributed applications.” In Proceedings of the eighth ACM SIGPLAN sym-
posium on Principles and practices of parallel programming, PPoPP ’01, pp. 123–132.
ACM, New York, NY, USA. ISBN 1-58113-346-4. doi:10.1145/379539.379590. URL
http://doi.acm.org/10.1145/379539.379590.

Yu H (2002). “Rmpi: Parallel Statistical Computing in R.” R News, 2(2), 10–14. URL
https://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf.

27

https://cran.r-project.org/package=pbdPROF
https://cran.r-project.org/package=pbdPROF
https://cran.r-project.org/package=pbdMPI
https://cran.r-project.org/package=pbdMPI
https://cran.r-project.org/package=pbdZMQ
http://r-pbd.org/
http://www.r-project.org/
http://www.r-project.org/
https://cran.r-project.org/package=pbdCS
https://cran.r-project.org/package=pbdCS
https://cran.r-project.org/package=pbdDEMO
https://cran.r-project.org/package=snow
https://cran.r-project.org/package=multicore
https://doi.org/10.1145/379539.379590
http://doi.acm.org/10.1145/379539.379590
https://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf

	Acknowledgement
	1. Introduction
	1.1. System Requirements
	1.2. Installation and Quick Start
	1.3. Basic Steps
	1.4. More Examples

	2. Performance
	3. SPMD in Examples from package parallel
	4. Long Vector and 64-bit for MPI
	5. Simple Input and Output
	6. Simple Pairwise Evaluation
	7. Windows Systems (MS-MPI)
	7.1. Install from Binary
	7.2. Build from Source

	8. FAQs
	8.1. General
	8.2. Programming
	8.3. MPI Errors
	8.4. Other Errors

	References

