
A Quick Guide for the pmclust Package

Wei-Chen Chen1 and George Ostrouchov2,3

1pbdR Core Team

2National Institute for Computational Sciences,
University of Tennessee,

Knoxville, TN, USA

3Computer Science and Mathematics Division,
Oak Ridge National Laboratory,

Oak Ridge, TN, USA

Contents

Acknowledgement ii

1. Introduction 1
1.1. System Requirement . 1
1.2. Quick Start . 1

2. Examples 2
2.1. Single Program Multiple Data . 2
2.2. Master and Slaves . 3
2.3. More Examples . 4
2.4. Input and Output via CSV Files . 5

3. Algorithm 5

4. Discussion 6

References 8

i

Acknowledgement
Chen was supported in part by the Department of Ecology and Evolutionary Biology at the
University of Tennessee, Knoxville, and a grant from the National Science Foundation (MCB-
1120370.)

Chen and Ostrouchov were supported in part by the project “Visual Data Exploration and
Analysis of Ultra-large Climate Data” funded by U.S. DOE Office of Science under Contract
No. DE-AC05-00OR22725. Ostrouchov were also supported in part by the project “NICS
Remote Data Analysis and Visualization Center” funded by the Office of Cyberinfrastruc-
ture of the U.S. National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for
NICS-RDAV center.

This work used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

ii

Warning: This document is written to explain the major functions of pmclust (Chen and
Ostrouchov 2012b), version 0.1-7. Every effort will be made to insure future versions are
consistent with these instructions, but new features in later versions may not be explained in
this document.

1. Introduction
This is a quick guide to the package pmclust for parallel model-based clustering. We will
cover how to perform parallel EM algorithm in a single program multiple data (SPMD)
programming model, and a master and workers programming model. The main function
em.step will cluster data in to K different groups based on a finite mixture Gaussian model
with unstructured dispersions.
Information about the detail functionality of this package, and any changes in future versions
can be found on our website “Programming with Big Data in R” at https://pbdr.org/. More
discussions about parallel computing in R (R Core Team 2012) can be found in Schmidberger
et al. (2009). The system requirement for pmclust is described next. In Section 2, examples
are demonstrated. In Section 3, algorithms implemented in pmclust are introduced. In
Section 4, a few performance issues are discussed.

1.1. System Requirement

The pmclust is mainly developed and tested under Linux operating systems (http://en.
wikipedia.org/wiki/Linux). The major computing environment for pmclust requires MPI
systems (http://en.wikipedia.org/wiki/Message_Passing_Interface), such as LAM/MPI
(http://www.lam-mpi.org/) or OpenMPI (http://www.open-mpi.org/). Both of SPMD
and master and workers programming models are also tested.
Other operating systems such as Mac or Windows are also possible to run the pmclust if MPI
systems and pbdMPI (Chen et al. 2012a) are correctly installed, and the instruction can be
found in the vignette of pbdMPI (Chen et al. 2014). For master and workers models, it is
also possible to run the pmclust within Rmpi (Yu 2010) via pbdMPI.
Note that Rmpi (Yu 2010) requires more complicated settings for running on some MPI
systems under the mater and workers programming model. See Rmpi’s website for details at
http://www.stats.uwo.ca/faculty/yu/Rmpi/.

1.2. Quick Start

There are four quick examples utilizing iris dataset (Fisher 1936) in different data distributed
format to demonstrate several algorithms including parallel model-based clustering and par-
allel K-means.

Shell Command� �
mpiexec -np 2 Rscript -e "demo(iris_gbdr ,'pmclust ',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(iris_common ,'pmclust ',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(iris_single ,'pmclust ',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(iris_dmat ,'pmclust ',ask=F,echo=F)"� �

1

https://pbdr.org/
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.lam-mpi.org/
http://www.open-mpi.org/
http://www.stats.uwo.ca/faculty/yu/Rmpi/

The examples cluster the iris data into 3 clusters where iris has 150 observations and 4
variables. Algorithm details are in Sections 2 and 3.
Each of these commands will run pmclust() and pkmeans() on a matrix X.std in four for-
mats. gbdr/spmdr is GBD/SPMD row-major format, common assumes X.std commonly exists
on all processors, single assumes X.std only exists on rank 0 by default, and dmat1 assumes
X.std is a ddmatrix. See pbdDEMO (Schmidt et al. 2013a) and it’s vignette (Schmidt et al.
2013b) for more details of gbdr and ddmatrix2.

2. Examples
The pmclust is a package of R (R Core Team 2012) and designed in the single program multiple
data (SPMD) programming model, so there is no need to spawn workers from the master node
as the usual way of Rmpi (Yu 2010). The pmclust fully uses the resource of processors by
running jobs on all workers, i.e. each workers do the their own jobs and communicate with
others. However, it is possible to run the package in the master and workers mode, i.e. the
master assigns jobs to workers or itself, and manages communications.

2.1. Single Program Multiple Data

A simulation example is given along with the pmclust package assuming run on four pro-
cessors by executing the following under the MPI environment. The following command
will quickly provide a simple example of pmclust which estimates parameters by the EM
algorithm (Dempster et al. 1977).

Shell Command� �
mpiexec -np 4 Rscript -e "demo(ex_em ,'pmclust ',ask=F,echo=F)"� �
Other examples are ex_aecm, ex_apecm1, ex_apecm2, and ex_kmeans. Note that one can
have one job, but run on a machine which has four processors. On the other hand, one can
have four jobs, but run on a machine which has only one processor.
This demo will launch four jobs/workers to simulate a small dataset and then perform the
EM algorithm to estimate parameters and cluster the data. The data have N = 20, 000
observations xn (n = 1, 2, . . . , N) generated from a true model, and each worker takes 5, 000
observations. Settings of the model are two clusters (K = 2) on a 2D plane (p = 2), i.e.

Xn
iid∼ η1MVN2(µ1, Σ1) + η2MVN2(µ2, Σ2)

where the mixing proportions are η1 = 0.4 and η2 = 0.6, the centers are µ1 = (6, 7)′ and
µ2 = (8, 9)′, and the dispersions are

Σ1 =
(

1/6 0
0 1/7

)
and Σ2 =

(
1/8 0
0 1/9

)
.

The output will be similar as the following. Note that the classification id’s are exchangeable,
so the mixing proportion gives the order of new id. For example, the next result gives id

1Retired from pmclust
2Retired from pmclust

2

exchanges related to the true id’s. i.e. η̂1 = 0.5999045 and η̂2 = 0.4000955. Therefore, the
µ̂’s and Σ̂’s are all switched.

R Output� �
=====
Method : em
Convergence : 1 iter: 4 abs.err: 0.001067232 rel.err: 3.607484e -08
logL: -29583.84
K: 2

ETA:
[1] 0.5999045 0.4000955

MU:
[,1] [,2]

[1,] 8.000351 6.002414
[2,] 8.998864 7.003725

SIGMA:
[,1] [,2]

[1,] 0.124692616 0.166987201
[2,] 0.001135919 0.001845902
[3,] 0.001135919 0.001845902
[4,] 0.111299586 0.142091610
=====

user system elapsed
0.372 0.088 2.049� �

2.2. Master and Workers

The same simulation demonstrated in Section 2.1 can be run inside R, rather than through
shell commands. The same SPMD code can be run in the master and workers model as the
usual way of Rmpi with a few required adjustments.
The following example provides a quick way to run SPMD code under master and workers
mode or interactive mode of R. The simplified steps are

1. Save parallel scripts in a file, say “ex_demo.r”.

2. Broadcast source("ex_demo.r") to all workers.

3. Run source("ex_demo.r") on the master.

Be careful, the source function on the master should go after the calls to the workers.
Otherwise, the R console may lose the controls due to the MPI blocking calls. The philosophy
here is treating the master as one of the workers, but it has to command other workers to
work first before burning itself.
These are the adjusted script from the simulation in Section 2.1, and let’s save them in the
file “ex_demo.r”.

SPMD R Script� �
3

Setup mpi environment .
library (pmclust , quiet = TRUE)
comm.set.seed (123 , diff = TRUE)

Generate an example data.
N. allspmds <- rep (5000 , comm.size ())
N.spmd <- 5000
N.K.spmd <- c(2000 , 3000)
N <- 5000 * comm.size ()
p <- 2
K <- 2
data.spmd <- generate .basic(N.allspmds , N.spmd , N.K.spmd , N, p, K)
X.spmd <- data.spmd$X.spmd

Run clustering .
PARAM.org <- set. global (K = K) # Setting global variables .
PARAM.org <- initial .em(PARAM.org) # Initialization .
PARAM.new <- em.step(PARAM.org) # Run EM.
em. update .class () # Update classifications .
mb.print (PARAM.new , CHECK) # Print results .

Print run time.
comm.print (proc.time ())
finalize (quit.mpi = FALSE) # Avoid kill Rmpi.� �
Note that currently OpenMPI is not able to spawn workers as LAM/MPI, but Rmpi provides
a file Rprofile to take care this procedure. Rename and save this file as .Rprofile at the
working directory, and launch R by mpiexec to envoke workers. An example is given along
with the Rmpi package, and see the Rmpi’s website for details at http://www.stats.uwo.
ca/faculty/yu/Rmpi/.
Under the OpenMPI system, the above script can be run inside R as the following, and provide
the same results as in Section 2.1.

Master/Workers� �
bash$ mpiexec -np 4 R --no -save -q
###
Some messages will show the workers are running .
The "spawn" is no needed for OpenMPI anymore .
###
R> # library (Rmpi) # Require for LAM/MPI.
R> # mpi.spawn. Rslaves () # Require for LAM/MPI.

R> mpi.bcast.cmd(source ("ex_demo.r")) # Workers go first.
R> source ("ex_demo.r") # Master runs.� �
2.3. More Examples

Note that the example in the Section 2.1 only utilizes a very simple function generate.basic
to demonstrate a random dataset for testing. A more general function generage.MixSim
utilizes the function MixSim from the package MixSim (Melnykov et al. 2012) providing

4

http://www.stats.uwo.ca/faculty/yu/Rmpi/
http://www.stats.uwo.ca/faculty/yu/Rmpi/

different conditions of overlaps for simulation studies.
It is also more appropriate to utilize the function MixSim for evaluating performance of algo-
rithms developed in the pmclust as described in the next Section 3. The other simple example
is also provided in the pmclust and can be run with

Shell Command� �
mpiexec -np 4 Rscript -e "demo(ex_MixSim ,'pmclust ',ask=F,echo=F)"� �
More performance comparison can be found in Chen et al. (2013).
Further, X.spmd may be replaced by X.dmat3 in a ddmatrix format (block-cyclic) for larger
datasets and gaining performance improvement. The main corresponding functions are given
in the Table 14. The details of block-cyclic (X.dmat) can be found in the pbdR vignettes (Chen
et al. 2012b; Schmidt et al. 2012a,b).

Table 1: The functions for ddmatrix
ddmatrix GBD/SPMD Algorithm
em.step.dmat em.step EM
(TBD) aecm.step AECM
(TBD) apecm.step APECM
(TBD) apecma.step APECMa
kmeans.step.dmat kmeans.step Kmeans

2.4. Input and Output via CSV Files

Since pbdMPI version 0.2-2, there are serveral simple data input and output methods imple-
mented either for text or csv files in distributed manner (spmd/gbd). Therefore, through csv
files, we may simply read data from disk and dump clustering results for further analysis. A
demo example is in pmclust as next.

Shell Command� �
mpiexec -np 4 Rscript -e "demo(io_csv ,'pmclust ',ask=F,echo=F)"� �
We use four processors to generate 400 samples (100 per processor) in two dimension and two
clusters by MixSim (Melnykov et al. 2012). The fake data with true classification IDs are
dump to a csv file named toy_org.csv. Then, we read data from the file back to memory,
use pmclust to cluster them, and dump the data with new classification IDs to a new csv file
named toy_new.csv. Similar input and output process can be replaced by other file formats,
data streams, or databases.

3. Algorithm
Five algorithms are implemented in this packages including: EM (Dempster et al. 1977),
AECM (Meng and Van Dyk 1997), APECM (Chen and Maitra 2011), APECMa (Chen et al.

3Retired from pmclust
4Retired from pmclust

5

2013), and K-means (Lloyd 1982). The EM-like algorithms (EM, AECM, APECM, and
APECMa) are for model-based clusterings (Fraley and Raftery 2002), while K-means is a
distance based clustering algorithm.
In general, AECM, APECM, and APECMa will have quick convergent rate in terms of few
iterations than EM. Since the more E-steps is updated, the more log likelihood is increased.
But, AECM and APECMa may take long computing time than EM if the M-step has analytic
solutions. In this situation, the majority of computing time in one iteration mostly spend on
the E-step. So, the more E-steps called, the more time spent for an entire iteration.
While the analytic solutions are not available for the M-step, the optimization routines are
required for maximization of complete log likelihoods. Note that the solutions only exists
in some simplified cases, and is not solvable in general. In this situation, the M-step may
slow down hugely EM iterations and cost more computing time than the E-step. Considering
faster convergent rate, like AECM or APECM, is a better choice (Chen and Maitra 2011).
The APECMa takes benefits in both of computing time and convergent rate. In the first
situation, APECMa has the same order of E-step computations as the EM has, so it can
converge faster than EM and has less computing time. In the second situation, APECMa has
a similar convergent rate as AECM and APECMa, so it can converge as efficient as the both
algorithms and has less computing time among all other EM-like algorithms.
The K-means probably is the fast among all algorithms since it is restricted in a very simple
model. However, the initialization procedure (Maitra 2009) based on this algorithm may
capture the skeleton of data, and may boost the EM-like algorithms and improve convergent
results.

4. Discussion
In Section 2.1, we saw the example about model-based clustering which is performed using
SPMD programming model. The four workers have their own data which are different across
all workers, while the workers know some information commonly owned by all others. For
example, MPI environment information are all recognized by all workers, and all workers
communicate inside the MPI world based on this information. Also, information about data
structure is also commonly know by all workers.
The workers simultaneously compute sufficient statistics based on part of data, and exchange
the statistics with all other workers. These sufficient statistics gathered from all other workers
need to be aggregated for the entire dataset. Then, the iteration of EM algorithm will update
the parameters based on these information. Note that the communication is only occurred in
the M-step and the entire E-step can be done by workers locally.
The computing performance is dominated by the amount of exchanges especially for comput-
ing on distributed large datasets. The more iterations are computed, the more communica-
tions are required. A parallelized algorithm should aim to reduce extra efforts for communi-
cations, but the parallel design should not increase difficulties of original algorithm. So, the
better algorithm such as APECM-like algorithms can provide less iterations to convergence
and obtain results more efficiently.
The ideas of parallelization can be found in Chen et al. (2013), and the similar idea can
benefit other statistical methods when applied to large datasets. See more SPMD examples
on the website “High Performance Statistical Computing” (Chen and Ostrouchov 2012a) at

6

https://snoweye.github.io/hpsc/. See more applications on the website “Programming
with Big Data in R” at https://pbdr.org/.

7

https://snoweye.github.io/hpsc/
https://pbdr.org/

References

Chen WC, Maitra R (2011). “Model-based clustering of regression time series data via
APECM – an AECM algorithm sung to an even faster beat.” Statistical Analysis and
Data Mining, 4, 567–578.

Chen WC, Ostrouchov G (2012a). “HPSC – High Performance Statistical Computing for
Data Intensive Research.” URL https://snoweye.github.io/hpsc/.

Chen WC, Ostrouchov G (2012b). “pmclust: Parallel Model-Based Clustering.” R Package,
URL https://cran.r-project.org/package=pmclust.

Chen WC, Ostrouchov G, Pugmire D, Prabhat M, Wehner M (2013). “A Parallel EM Al-
gorithm for Model-Based Clustering with Application to Explore Large Spatio-Temporal
Data.” Technometrics. (revision).

Chen WC, Ostrouchov G, Schmidt D, Patel P, Yu H (2012a). “pbdMPI: Programming with
Big Data – Interface to MPI.” R Package, URL https://cran.r-project.org/package=
pbdMPI.

Chen WC, Ostrouchov G, Schmidt D, Patel P, Yu H (2014). A Quick Guide for the pbdMPI
package (Ver. 0.2-2). R Vignette, URL https://cran.r-project.org/package=pbdMPI.

Chen WC, Schmidt D, Ostrouchov G, Patel P (2012b). “A Quick Guide for the pbdSLAP
package.” R Vignette, URL https://cran.r-project.org/package=pbdSLAP.

Dempster A, Laird N, Rubin D (1977). “Maximum Likelihood Estimation from Incomplete
Data via the EM Algorithm.” Journal of the Royal Statistical Society Series B, 39(3), 1–38.

Fisher R (1936). “The use of multiple measurements in taxonomic problems.” Annals of
Eugenics, 2, 179–188.

Fraley C, Raftery A (2002). “Model-Based Clustering, Discriminant Analysis, and Density
Estimation.” Journal of the American Statistical Association, 97, 611–631.

Lloyd S (1982). “Least squares quantization in PCM.” IEEE Transactions on Information
Theory, 28, 129–137.

Maitra R (2009). “Initializing partition-optimization algorithms.” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 6, 114–157.

Melnykov V, Chen WC, Maitra R (2012). “MixSim: Simulating Data to Study Performance
of Clustering Algorithms.” Journal of Statistical Software.

Meng XL, Van Dyk D (1997). “The EM Algorithm – an Old Folk-song Sung to a Fast New
Tune.” Journal of the Royal Statistical Society Series B, 59, 511–567.

R Core Team (2012). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL https:
//www.r-project.org/.

8

https://snoweye.github.io/hpsc/
https://cran.r-project.org/package=pmclust
https://cran.r-project.org/package=pbdMPI
https://cran.r-project.org/package=pbdMPI
https://cran.r-project.org/package=pbdMPI
https://cran.r-project.org/package=pbdSLAP
https://www.r-project.org/
https://www.r-project.org/

Schmidberger M, Morgan M, Eddelbuettel D, Yu H, Tierney L, Mansmann U (2009). “State
of the Art in Parallel Computing with R.” Journal of Statistical Software, 31.

Schmidt D, Chen WC, Ostrouchov G, Patel P (2012a). “A Quick Guide for the pbdBASE
package.” R Vignette, URL https://cran.r-project.org/package=pbdBASE.

Schmidt D, Chen WC, Ostrouchov G, Patel P (2012b). “A Quick Guide for the pbdDMAT
package.” R Vignette, URL https://cran.r-project.org/package=pbdDMAT.

Schmidt D, Chen WC, Ostrouchov G, Patel P (2013a). “pbdDEMO: Programming with Big
Data – Demonstrations of pbd Packages.” R Package, URL https://cran.r-project.
org/package=pbdDEMO.

Schmidt D, Chen WC, Patel P, Ostrouchov G (2013b). Speaking Serial R with a Parallel
Accent. R Vignette, URL https://cran.r-project.org/package=pbdDEMO.

Yu H (2010). “Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface)).” R Package
(v:0.5-9), URL https://cran.r-project.org/package=Rmpi.

9

https://cran.r-project.org/package=pbdBASE
https://cran.r-project.org/package=pbdDMAT
https://cran.r-project.org/package=pbdDEMO
https://cran.r-project.org/package=pbdDEMO
https://cran.r-project.org/package=pbdDEMO
https://cran.r-project.org/package=Rmpi

	Acknowledgement -0.3cm
	1. Introduction
	1.1. System Requirement
	1.2. Quick Start

	2. Examples
	2.1. Single Program Multiple Data
	2.2. Master and Slaves
	2.3. More Examples
	2.4. Input and Output via CSV Files

	3. Algorithm
	4. Discussion
	References

