Package: pmclust 0.2-2

pmclust: Parallel Model-Based Clustering using Expectation-Gathering-Maximization Algorithm for Finite Mixture Gaussian Model

Aims to utilize model-based clustering (unsupervised) for high dimensional and ultra large data, especially in a distributed manner. The code employs 'pbdMPI' to perform a expectation-gathering-maximization algorithm for finite mixture Gaussian models. The unstructured dispersion matrices are assumed in the Gaussian models. The implementation is default in the single program multiple data programming model. The code can be executed through 'pbdMPI' and MPI' implementations such as 'OpenMPI' and 'MPICH'. See the High Performance Statistical Computing website <https://snoweye.github.io/hpsc/> for more information, documents and examples.

Authors:Wei-Chen Chen [aut, cre], George Ostrouchov [aut]

pmclust_0.2-2.tar.gz


pmclust_0.2-2.tar.gz(r-4.5-noble)pmclust_0.2-2.tar.gz(r-4.4-noble)
pmclust_0.2-2.tgz(r-4.4-emscripten)pmclust_0.2-2.tgz(r-4.3-emscripten)
pmclust.pdf |pmclust.html
pmclust/json (API)

# Install 'pmclust' in R:
install.packages('pmclust', repos = c('https://snoweye.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/snoweye/pmclust/issues

Datasets:
  • .PMC.CT - A Set of Controls in Model-Based Clustering.
  • .pmclustEnv - Set Global Variables According to the global matrix X.gbd

On CRAN:

3.70 score 5 stars 3 scripts 180 downloads 26 exports 3 dependencies

Last updated 1 years agofrom:1523c5f12e. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-linux-x86_64OKNov 01 2024

Exports:aecm.stepapecm.stepapecma.stepassign.N.samplee.stepem.onestepem.stepem.update.classgenerate.basicgenerate.MixSimget.CLASSget.N.CLASSindep.logLinitial.centerinitial.eminitial.RndEMkmeans.stepkmeans.update.classm.stepmb.printpkmeanspmclustpmclust.reduceKreadmeset.globalset.global.gbd

Dependencies:floatMASSpbdMPI

pmclust-guide

Rendered frompmclust-guide.Rnwusingutils::Sweaveon Nov 01 2024.

Last update: 2021-02-09
Started: 2013-07-03