Package: pmclust 0.2-2
pmclust: Parallel Model-Based Clustering using Expectation-Gathering-Maximization Algorithm for Finite Mixture Gaussian Model
Aims to utilize model-based clustering (unsupervised) for high dimensional and ultra large data, especially in a distributed manner. The code employs 'pbdMPI' to perform a expectation-gathering-maximization algorithm for finite mixture Gaussian models. The unstructured dispersion matrices are assumed in the Gaussian models. The implementation is default in the single program multiple data programming model. The code can be executed through 'pbdMPI' and MPI' implementations such as 'OpenMPI' and 'MPICH'. See the High Performance Statistical Computing website <https://snoweye.github.io/hpsc/> for more information, documents and examples.
Authors:
pmclust_0.2-2.tar.gz
pmclust_0.2-2.tar.gz(r-4.5-noble)pmclust_0.2-2.tar.gz(r-4.4-noble)
pmclust_0.2-2.tgz(r-4.4-emscripten)pmclust_0.2-2.tgz(r-4.3-emscripten)
pmclust.pdf |pmclust.html✨
pmclust/json (API)
# Install 'pmclust' in R: |
install.packages('pmclust', repos = c('https://snoweye.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/snoweye/pmclust/issues
- .PMC.CT - A Set of Controls in Model-Based Clustering.
- .pmclustEnv - Set Global Variables According to the global matrix X.gbd
Last updated 1 years agofrom:1523c5f12e. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-linux-x86_64 | OK | Nov 01 2024 |
Exports:aecm.stepapecm.stepapecma.stepassign.N.samplee.stepem.onestepem.stepem.update.classgenerate.basicgenerate.MixSimget.CLASSget.N.CLASSindep.logLinitial.centerinitial.eminitial.RndEMkmeans.stepkmeans.update.classm.stepmb.printpkmeanspmclustpmclust.reduceKreadmeset.globalset.global.gbd